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ABSTRACT 

Due to the scarcity of and errors in observations, direct measurements of errors 

in Numerical Weather Prediction (NWP) analyses and forecasts with respect to nature 

(i.e., “true” error) are lacking. Peña and Toth (2014) introduced an inverse method 

called SAFE-I where true errors are (i) theoretically assumed to follow exponential 

error growth, and (ii) estimated from the perceived errors (i.e., forecast minus verifying 

analysis) that they affect. While decaying or neutral errors, by definition will not have 

a significant impact on longer range forecast errors, they can still accumulate in, and 

negatively influence NWP data assimilation–forecast cycles. 

In a new, generalized version of the inverse method (SAFE-II), analysis and 

forecast error variance is decomposed into exponentially growing and decaying 

components, assuming they are independent as they comprise of vectors from the 

leading and trailing ends of the Lyapunov spectrum, respectively. SAFE-II uses the 

initial variance and decay rate associated with non-growing perturbations to describe 

and estimate their behavior. 

The assumptions behind SAFE-II are first validated in a simulated environment. 

SAFE-II is then applied to estimate the error variance in both simulated and operational 

analyses/forecast environment. Perceived error measurements are found to be 

statistically consistent (at the 95% significance level) with the SAFE-II error behavior 

model, which offers a more accurate description of error variance than SAFE-I that 

neglects decaying errors. At various levels and for different variables, decaying errors 
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are found to constitute up to 60 % of the total analysis error variance, much of which 

decay during the first 12-18 hours of forecast integrations. 

Keywords: uncertainty of analysis, forecast verification, error estimation, data 

assimilation, ensemble forecasts 
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29 1. Introduction 

30 Due to the intermittency of, and errors in available observations, the true state of 

31 the atmosphere, however alluring it is, remains unknown. The state of the atmosphere 

32 is estimated using data assimilation (DA, current state, or analysis) and Numerical 

33 Weather Prediction tools (NWP, future states or forecasts). Both the assessment and 

34 improvement1 of the quality of DA and NWP tools and products depend on reliable 

35 estimates of analysis and forecast error variance. In most studies, such errors are 

36 estimated with the variance between NWP analysis or forecast states that are being 

37 evaluated and verifying observations or NWP analysis fields (in case of forecast 

38 verification). Since errors in some verifying observations or analysis fields are of 

39 comparable magnitude to those in analysis or short-range forecast fields that are being 

40 evaluated, such an approach is convoluted and yields questionable results. 

41 Peña and Toth (2014, PT14) introduced a method hereafter called Statistical 

42 Analysis and Forecast Error (SAFE-I) estimation that relates the measured perceived 

43 forecast error variance (forecast minus verifying analysis) to true error variance 

44 (forecast minus reality interpreted on the model grid). SAFE-I is independent of any 

45 assumptions used in analysis or forecast systems. The measured perceived forecast error 

46 variance is modeled by several unknowns. To reduce the number of unknowns in the 

47 statistical estimation process, it uses prior knowledge about the evolution of errors in 

1 For example, the reliable specification of analysis error variances offers a reference for the rescaling 

of initial ensemble perturbations (Toth and Kalnay, 1997; Molteni et al., 1996; Wei et al., 2008). Also, 

the accurate quantification of short-range forecast error variances can orient the tuning of background 

forecast error covariance in DA (Fisher, 1996; Whitaker et al., 2008). 
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48 analysis–forecast systems. The unknown parameters are estimated via the minimization 

49 of the difference between the sample mean (e.g., over a season) of measured and 

50 modeled (via the unknown parameters) perceived error variance. Feng et al. (2017) 

51 extended the application of SAFE-I from area mean to pointwise error estimation and 

52 quantified the spatial distribution of analysis and short-range forecast error variance at 

53 a 95% confidence level. 

54 For simplicity, SAFE-I assumes that in short range (i.e., out to 2 or 3 days) synoptic 

55 scale forecasts all analysis errors grow at a close to exponential rate. Analysis errors are 

56 therefore assessed in a “growing equivalent” sense. The effect of non-growing analysis 

57 errors, if any, will implicitly manifest in modified estimates of the growing error 

58 component. In the presence of a significant level of decaying analysis errors, this may 

59 lead to an overestimation of initial growing error variance, and an underestimation of 

60 the growth rate. 

61 Analysis fields are a weighted sum of observations and NWP first guess forecast 

62 fields. It is generally accepted that NWP analyses contain both random or decaying, and 

63 dynamically conditioned, growing errors (Toth and Kalnay, 1993; 1997; Houtekamer et 

64 al., 2005; Buizza et al., 2005; Wei et al., 2008; Peña et al., 2010). The former generally 

65 signifies a lack of dynamical balance in analysis fields. These errors are believed to 

66 originate from errors in observations (e.g., Hunt et al., 2007; Stewart et al., 2013), or 

67 statistical DA approximations 2 , hence can be considered random from a model 

2 Examples include the use of “covariance localization” in ensemble Kalman filters (EnKF) for the 

reduction of spurious long-distance covariances (Houtekamer and Mitchell, 2001). Such schemes may 

introduce an imbalance among different variables (Mitchell et al., 2002; Lorenc, 2003). The use of 
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68 dynamics point of view. Therefore, these errors project onto the stable (or decaying) 

69 manifold of the system (Toth and Kalnay, 1997; Kalnay, 2003). Growing errors 

70 originate from amplifying errors in first guess forecasts, projecting onto the unstable 

71 (or growing) subspace (Pires et al., 1996; Toth and Kalnay, 1997; Kalnay, 2003; 

72 Trevisan and Uboldi, 2004; Feng et al., 2018). As Pires et al (1996) showed, improved 

73 DA techniques lead to a reduction of the proportion of errors that decay in the overall 

74 analysis error. 

75 When decaying errors are present in the analysis, over a transient period the overall 

76 error may either decay or exhibit slower than exponential growth due to the rapid 

77 collapse of random errors (e.g., Vannitsem and Nicolis, 1994; Trevisan and Legnani, 

78 1995; Houtekamer et al., 2005; Palatella et al., 2013). Such a transient period is 

79 followed by exponential error growth 3 , characteristic of the system’s dynamics 

80 associated with the leading local Lyapunov vectors (Toth and Kalnay, 1997; Kalnay, 

81 2003; Snyder and Hamill, 2003; Ding and Li, 2007; Li and Ding, 2011; Feng et al., 

82 2014).  

83 Forecast errors also display a transitional decaying phase in Observing System 

84 Simulation Experiments (OSSEs) where true error is directly measurable (see, e.g., 

85 Privé and Errico, 2013a). When initial perturbations are dynamically less conditioned 

86 (i.e., have significant projection on the stable manifold due to, e.g. the addition of 

incomplete balance constraints may also leave gravity waves in the analysis that appear as noise to 

hydrostatic models (Huang and Lynch, 1993; Kleist et al., 2009). 
3 In nonlinear systems, as the level of error becomes comparable to the size of the attractor, nonlinear 

interactions moderate exponential growth (Lorenz, 1982; Dalcher and Kalnay, 1987). 
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simulated observational noise), the ensemble spread may also exhibit transitional 

behavior (e.g., Houtekamer et al., 2005; Hamill and Whitaker, 2011). 

Decaying components of analysis error or perturbation variance rapidly disappear 

during the initial phase of forecast integrations (typically in less than a day). But their 

accurate estimation can (i) improve the accuracy of the analysis and short-range forecast 

error variance estimation; (ii) diagnose the effectiveness of DA schemes (in the spirit 

of Pires et al., 1996); and (iii) provide guidance as to the appropriate level of growing, 

dynamically conditioned perturbations (as opposed to quickly disappearing noise) in 

initial ensemble perturbation generation methods. In particular, the diagnosis of 

decaying errors is a prerequisite for their reduction and for making analysis fields 

dynamically more balanced. 

This study is based on the recognition that analysis errors generally project onto 

the full spectrum of local Lyapunov vectors (LLVs; Wolf et al., 1985; Legras and 

Vautard, 1996), from the fastest growing to the fastest decaying directions (Toth and 

Kalnay, 1997; Vannitsem and Nicolis, 1997; Hamill et al., 2002; Kalnay, 2003; Ding et 

al., 2017; Feng et al., 2018). This is because each analysis step introduces some noise 

into the analysis field, randomly projecting onto the full spectrum of directions in the 

phase space. The forecast step amplifies dynamically growing error patterns while 

dissipating errors in other directions, thus rotating the overall error toward the growing 

subspace. Such potentially complex error behavior is approximated here by assuming 

that the total error variance is the sum of two orthogonal error components (SAFE-II). 

The first component is exponentially growing, characterized by the leading Lyapunov 
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vector (Lorenz, 1996; Toth and Kalnay, 1997; Ziehmann et al., 2000; Kalnay, 2003; 

Feng et al., 2014), estimated by SAFE-I, while the other component introduced here is 

exponentially decaying, considered as a composite of errors across all the neutral and 

trailing LVs. 

The modeling of the decaying errors in SAFE-II is introduced in Section 2. Section 

3 describes the Global Forecast System (GFS) that is used operationally at the National 

Centers for Environmental Prediction (NCEP), in which SAFE-II will be tested. The 

SAFE-II assumptions are validated in a GFS-based Observing System Simulation 

Experiment (OSSE) environment (Cucurull et al., 2017) where “ground truth” is known 

exactly (Section 4). Experimental SAFE-II results from both simulated and operational 

systems, including a comparison with SAFE-I output, are presented and analyzed in 

Section 5, followed by preliminary conclusions in Section 6 and discussion in Section 

7. 

2. Methodology 

a. Statistical Analysis and Forecast Error estimation algorithm (SAFE-

I) 

Let F, A, and T denote the forecast, analysis, and true state of reality, all valid at 

the same time and interpolated onto a common model grid. The true (xi) and perceived 

(fi) errors in an i·∆t lead time forecast (where ∆t is the length of the DA cycle) are then 

defined as: 

xi = Fi - Ti ,          (1)  

fi = Fi - Ai .         (2)  

7 



 
 

     

 

 

                      

       

    

 

    

   

  

  

   

   

  

                    

  

  

   

 

  

  

 

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

Since the true state of reality is not known exactly, the true error is not measurable. For 

each lead time, PT14 introduces the following relationship between the true analysis 

and forecast error variances and the perceived forecast error variance measurements: 

2fi = x2
0 + xi 

2 - 2ρi ∙ x0 ∙ xi,           (3)  

where fi 
2 , x0

2 and xi 
2 are the spatial and temporal mean of error variance 

corresponding with fi, x0, and xi, and ρi is the sample mean correlation between x0 and 

xi. The unknown parameters are estimated by minimizing the difference between the 

measured (fi 
2) and the modeled (f  

i 
2) perceived error variance in Eqs. like (3). 

Note that the number of unknowns in a series of Eqs. like (3) exceeds the number 

of measured quantities. Here we follow PT14 and use a simplifying setup as well as 

prior knowledge about error growth and DA (in the form of several assumptions, see 

Table 1) to dramatically reduce the number of unknowns in a series of Eqs. like (3). 

Simplifying setup. As in SAFE-I, forecasts are verified against analysis fields from 

the same DA-forecast system that is used for the initialization of the forecasts: 

F0 = A0           (4)  

We opt to use analysis fields instead of observations as a proxy for reality as, by design, 

they have a lower error. Choosing verifying analysis fields from the same system that 

initializes the forecasts reduces the number of unknowns, potentially reducing errors in 

their statistical estimation. 

Assumption 1: Model error. In this study, we focus on extratropical forecast 

variables verified against analysis fields that represent natural processes at the model’s 

spatiotemporal resolution. For simplicity, under these conditions we assume that model 
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error is negligible. In case total forecast error can be explained purely through the 

amplification of initial errors, the assumption will be considered validated. For other 

(e.g., tropical) variables or for processes not well resolved by the model (e.g., parameter 

or truncation errors), the model error can be explicitly represented as an additional term 

in Eq. 5 below (see, e.g., PT14, and Vannitsem and Toth, 2002, or Nicolis et al., 2009, 

respectively). 

Assumption 2: Error evolution. Error variance in short-range forecasts of complex 

systems evolve exponentially and therefore can be described simply by two unknown 

parameters - the initial analysis error size x0, and the exponential growth rate α (Lorenz, 

1963):  

2 2xi  = x0 · ei·∆t·α .           (5)  

If necessary, (5) can be augmented to represent the effect of nonlinear saturation (i.e., 

replace the exponential relationship with the logistic function), or model related errors 

(PT14). 

Assumption 3: Data impact on analysis. PT14 recognized that the repeated 

insertion of new observational information in successive DA-forecast cycles results in 

the progressive decorrelation of true error in a freely evolving forecast from the true 

error in verifying analyses valid at the same time. Assuming that a statistically similar 

amount of observational information is ingested in each DA cycle, the error 

decorrelation follows a power law relationship: 

iρi = ρ1.   (6)  
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ρ1 and ρi in Eq. 6 indicate the angular extent to which the error in the latest analysis is 

rotated from the error in the first guess (∆t = 6 hours for a typical DA cycle in global 

forecast systems) or from earlier initialized longer range forecasts all valid at the time 

of the analysis, respectively, due to one (or multiple) introduction(s) of observational 

information. The simplicity of the data impact relationship in Eq. 6 is because the error 

that is assumed to be comprised of leading LLVs, whether present in a DA-forecast 

cycle or in a “free” longer range forecast, develop similarly in a quasi-linear fashion, 

over the same (or very similar) time evolving flow. 

With the relationships in Eqs. (4)-(6), the number of unknowns is significantly 

reduced, and the short-range perceived error variance can be simulated with only three 

unknowns (x0, α, ρ1): 

2 2fi  = x0 + x2
0·ei·∆t·α – 2ρi 

1·x0
2·√ei∙∆t∙α.           (7)  

The unknown parameters are then estimated by minimizing the cost function: 

2 2 -1),  J = max(| fi  - fi  | ∙ wi           (8)  

where wi 
-1 is the weight on the fitted perceived error variance at lead time i·∆t, and |•| 

represents the absolute value. The minimization is carried out using the limited-memory 

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (Byrd et al., 1995). The 

choice of the L norm (max(•); i.e. infinite norm) is motivated by a desire to get a good 

fit over the entire range of lead times (PT14). Simulated perceived error values on the 

right side of Eq. (7) are expected to match their measurement counterparts only within 

the sampling uncertainty of the latter which is given by the Standard Error of the Mean 

(SEM). For further details on SEM and wi 
-1, see Appendix A. 
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b. Decomposition of analysis and forecast errors 

As mentioned earlier, analysis errors are generally assumed to project with varying 

power on the full spectrum of LLVs, from the fastest growing to fastest decaying vectors 

(Toth and Kalnay, 1997; Vannitsem and Nicolis, 1997; Hamill et al., 2002; Kalnay, 2003; 

Feng et al., 2018). Recognizing that true error variance at longer lead times is dominated 

by the fastest growing components of the total error (since decaying errors diminish 

early on), SAFE-I uses a most economical, 1-dimensional model to describe error 

evolution constrained in the subspace of the leading (i.e., fastest growing) LLVs. 

Such a model, however, cannot describe the transitional behavior arising early on 

in a forecast due to neutral or decaying analysis errors. To assess the behavior of 

decaying errors and to enhance the accuracy of growing error variance estimates, here 

we propose a generalization of the SAFE-I algorithm. While SAFE-I assumes all errors 

are confined in the subspace of the leading LLVs and grow exponentially, the new 

method called SAFE-II introduces a second, exponentially decaying component 

orthogonal to the growing direction, accounting for all non-growing errors. 

The total analysis error variance in SAFE-II is thus described as the sum of the 

growing and decaying components: 

x0
2 = g0

2 + d0
2,           (9)  

where g0
2 and d0

2 are the initial growing and decaying error variances, respectively. In 

the forecast phase, the growing component expands exponentially, while the decaying 

component shrinks exponentially, yielding the following sum for the total true forecast 

error variance (Assumption 2 behind SAFE-II): 
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xi 
2 = g2

0·ei·∆t·α + d0
2·ei·∆t·β ,          (10)  

where β is a negative value representing the exponential decay rate. The transitional 

behavior of the total error (solid) due to the vanishing decaying errors (dotted) is 

illustrated in Fig. 1. Following the initial transitional period during which most of the 

decaying errors disappear, the total error follows the evolution of the exponential 

component (dashed line in Fig. 1). By substituting x0
2 and xi 

2 in Eq. (7) with Eqs. (9) 

and (10), the perceived error variance simulated with the two additional SAFE-II 

parameters (d0 and β) can be written as: 

f  
i
 2 = g0

2 + d2
0+ g0

2 ∙ ei∙∆t∙α+ d2
0 ∙ e

i∙∆t∙β - 2ρ1 
i ∙ g2

0 + d0
2 ∙ g2

0 ∙ e
i∙∆t∙α+ d0

2 ∙ ei∙∆t∙β , (11) 

c. Use of additional measurements 

Given the challenge of estimating two extra parameters compared to SAFE-I, we 

explored whether additional measurements beyond perceived errors could be used for 

the reduction of uncertainty in SAFE-II parameter estimation. Lagged Forecast 

Differences (i.e. the differences between two different lead time forecasts valid at the 

same time, hereafter LFD) is one such measurable quantity. In Fig. 2, Fi-1 and Fi are 

two such forecasts (with lead times of (i–1)·∆t and i·∆t), while T and A denote the true 

and analyzed states, respectively, all valid at the same time. In triangle TFi-1Fi (blue 

dotted lines), the LFD variance between Fi-1 and Fi 
2 , red solid line) can be( fi-1, i 

expressed as: 

2  = 2  + x2 
i  – 2ρi-1,i ·xi-1·xi,       (12)  fi-1, i xi-1 

where ρi-1,i is the correlation between TFi-1 and TFi (blue dotted lines). 
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239 To enable the use of LFD measurements in SAFE-II without the introduction of 

240 ρi-1,i as an additional unknown parameter, we introduced three additional assumptions. 

241 Assumption 4: Relationship between true and perceived error variance. We first 

242 note that the correlation γi-1,i between AFi-1 and AFi (blue solid lines in Fig. 2) can be 

243 readily calculated from perceived error measurements. We further note that while true 

244 forecast error variance grows exponentially as a function of lead time, analysis error 

245 variance x0 
2 remains the same. Therefore, at sufficiently long lead times, the true and 

246 perceived errors become similar in magnitude: 

247 2 2~ , and  (13a)  fi-1 xi-1 

248 2 2fi ~ xi , (13b) 

249 and therefore correlation ρi-1,i can be well approximated by the measurable quantity 

250 γi-1,i. In this study we assume that the perceived and true forecast error variances become 

251 sufficiently similar at 2.25 (i=9) and 2.5 days (i=10) lead time, assuring that ρ9,10 ≈ γ9,10. 

252 Assumption 5: Transient period. As further simplifications, we also assume that 

253 any transient error behavior subsides within 24 hours4 . 

254 Assumption 6: Divergence rate of model trajectories. We also assume that the 

255 model, by reasonably capturing natural instabilities, reproduces the chaotic divergence 

256 of trajectories of the model and nature. Therefore, beyond 24-hour lead time, the three 

257 sides of triangle TFi-1Fi grow at the same pace, corresponding to the dynamically 

258 sustainable growth rate of the errors between model and reality (i.e. parameter α). It 

4 While true forecast error is largely unaffected by decaying errors beyond 24 hours lead time, the 

perceived error remains affected by decaying errors present in the verifying analyses, allowing for the 

estimation of decaying parameters in SAFE-II. 
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follows that correlations ρi-1,i remain approximately unchanged beyond 24 hours (i≥5) 

and equal to ρ9,10. Assumptions 1-6 are summarized in Table 1 and their validity will be 

investigated in section 4 in an OSSE environment. 

Based on the above assumptions and substituting xi 
2 in Eq. (12) with Eq. (10), the 

evolution of LFD between 1 to 2.5 days lead times can be modeled with only two 

parameters, g0 and α, that are also used in the simulation of perceived forecast error 

variance (cf. Eq. (11)):

 2  g0
2 ∙ e(i-1)∙∆t∙α  g0 ∙ g2

0√ e(i-1)∙∆t∙α ∙ ei ∙∆t∙α , (i=5, 6, …, 10). (14) fi-1,i 
2 ∙ ei ∙∆t∙α  2γ9, 10 

To distinguish between the lead times of perceived error and LFD measurements and 

associated weights, the index i is replaced with j in Eq. (14) before an LFD term is 

incorporated into the SAFE-II cost function of Eq. (8): 

J = max |fi
 2 - f  

i
 2| ∙ wi 

-1  + max  fj
 2
-1,j - fj

 2
-1,j  ∙ wj 

-1
-1,j  (i = 1, 2, …10 ; j = 5, 6, …10) 

(15) 

Since the simulation of LFD (Eq. (14)) does not involve decaying errors, LFD variance 

measurements, if desired, can also be incorporated into the cost function of SAFE-I. 

3. Data sets used 

SAFE-II will be applied to estimate true error variance in GFS analyses and 

forecasts, first in a simulated (OSSE), then in a realistic operational forecast 

environment at NCEP. 6-, 12-, …, 60-hour perceived error measurements will be 

calculated over the extratropical Northern Hemisphere (NH; 30° - 90°N) on a 1°×1° 

regular latitude/longitude grid. A cosine weight of latitude is used when calculating the 

area mean error variance so as to avoid undue weights on data from higher latitudes. 
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281 The choices of the spatial domain and lead time range minimize the effects of 

282 nonlinearities (Gilmour et al, 2001) or model related errors (Orrell et al., 2001). 

283 a. OSSE data 

284 SAFE-II assumptions will be validated (Section 4) and estimates evaluated 

285 (Section 5) using the OSSE setup5 described in detail by Appendix B and Cucurull et 

286 al., (2017). The three variables used are zonal wind (U), temperature (T), and 

287 geopotential height (GH). For the OSSE data used in this study, 6-hourly analyses are 

288 used corresponding with lower boundary conditions between 3 July and 26 August 2005, 

289 with 7-day forecasts initialized only at every 00Z. The SAFE-II cost function (Eq. (15)) 

290 is therefore modified to use 24-, instead of 6-hour lagged forecasts: 

291 J = max |fi 
2 - f  

i 
2| ∙ w-1 

i  + max  fj
 2
-4,j - fj

 2
-4,j  ∙ wj 

-1
-4,j  , (i = 1, 2, …10 ; j = 8, 9, 10), (16) 

292 b. Operational GFS data 

293 In Section 5, SAFE-II will also be used to assess analysis and forecast error 

294 variance in the operational, T1534, 64-level resolution GFS system (Yang, 2016). 

295 Analysis/forecast data are sampled every 6 hours and cover the 1 Sep - 30 Nov 2015 

296 period. 

297 Note that as mentioned before, the OSSE experiments introduced in Section 3.a use 

298 an earlier version of the NCEP NWP system (e.g., without a hybrid DA). Therefore, 

299 SAFE-II error estimates from the OSSE and operational environments cannot be 

300 directly compared. 

5 Short of having access to data from OSSE, analysis and forecast errors could also be simulated 

with perturbed fields from an ensemble of analyses and forecasts (Houtekamer et al., 2005; Feng et 

al., 2017). 
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4. Validation of SAFE-II assumptions 

An OSSE environment offers an ideal ground for the evaluation of the assumptions 

behind SAFE-II since not only the perceived error, but various characteristics of the 

true forecast error (e.g., error variance and the correlation between analysis and forecast 

errors) are also directly measurable. 

a. Basic assumptions 

A key assumption (Assumption 2 in Section 2.a and 2.b) states that the true forecast 

error variance can be considered as a sum of exponentially growing and decaying error 

components (Eq. (10)). In an OSSE environment, we can directly assess the validity of 

Assumption 2 by fitting the error evolution relationship in Eq. (10) to the time mean of 

true error variance measurements, through minimizing the following cost function: 

J = max( xi 
2 - x2 

i  ∙ ωi 
-1), (i =  0,  1,  …  10),          (17)  

where xi 
2 and x  

i 
2 are the measured and modeled true forecast error variances, 

respectively, and ωi 
-1 is the weight related to the SEM-based sampling error (refer to 

Appendix A) of the measured true error variances. 

Fig. 3 shows the sample (time) mean of directly measured true analysis and forecast 

error variance, along with 95% confidence intervals reflecting the effect of sampling 

errors, and a simulated error variance curve fitted to the sample mean of the 

measurements using the error decomposition of Eq. (10), as a function of 0-60 hours 

lead time, for three selected variables. All simulated values fall within the 95% 

confidence intervals, indicating that Assumption 2 about the decomposition of forecast 

errors (Section 2.b) is consistent with the experimental data. 
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The four estimated parameters with SAFE-II are listed in Table 2 (the first 4 values 

in “Fit SAFE-II” rows). These will be used as a reference for ground truth in the 

evaluation of SAFE-II estimates in Section 5. The performance of SAFE-I is also shown 

in Table 2. As expected, when decaying errors are absent (see variable T in Table 2), the 

two versions of SAFE identify the same exponential error growth (with identical fitted 

x0
2 and α values). In the presence of decaying analysis errors (variables U and GH), the 

SAFE-I error growth model still offers a statistically acceptable fit except for the 

estimated total analysis error variance of GH. The good fitting of exponential growing 

forecast error also justifies that Assumption 1 can be considered to be valid. However, 

with its additional two parameters, SAFE-II provides a considerably improved 

simulation of the analysis error compared to SAFE-I (2-3%, instead of 8-13% deviation 

from the reference measured true error, see corresponding numbers in parentheses in 

Table 2). 

When decaying errors are present (variables U and GH) but not considered, SAFE-

I arrives at higher initial growing error variance and lower growth rate estimates than 

SAFE-II (Table 2). SAFE-II finds the largest proportion of decaying errors in GH (about 

24.8% of the total analysis error variance), followed by U (11.2%). As an example, Fig. 

4 illustrates the evolution of the estimated growing, decaying and total error variance 

for GH by SAFE-II from 0 to 1.5 days. It is analogous to the behavior of growing and 

decaying components of true forecast error variance in the schematic figure (Fig. 1). 

Variables U has qualitatively similar error evolution. It is consistent for the variables 

that decay is so fast that within 24 hours the percentage of decaying errors drops below 
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1% of the total forecast error variance. This validates Assumption 5 in Section 2.c. The 

growth rate of LFD variance (the rightmost column in Table 2) has only up to 3% 

deviation from that of the true forecast error variance for all variables (Table 2) which 

indicates Assumption 6 is reliable. 

Another key assumption (Assumption 3 in Section 2.a) states that the correlation 

between true analysis and forecast errors (ρi) exponentially decays with increasing lead 

time (Eq. (6)). In an OSSE environment, “ground truth” correlation values ρi can be 

diagnosed from true error variance measurements using a transformed version of Eq. 

(3): 

ρ 2 2  
i = (x0 + xi  - f 2

i ) / (2·x0·xi).                  (18)   

To test Assumption 3, we simulate ρi with the exponential decorrelation relationship of 

Eq. (6) and then fit the simulated curve to the time mean of the diagnosed quantities 

(i.e., ground truth from Eq. (18)) by minimizing a cost function analogous to Eq. (17). 

The results in Fig. 5 reveal a reasonable correspondence between sample-based 

mean and simulated values of the correlation between analysis and forecast errors. For 

the two model prognostic variables (U and T), the fitted values of ρi are within the 95% 

sampling error interval of its sample-based mean values throughout the first 2 days. 

This indicates that the exponential degradation of ρ1 (Assumption 3) is consistent with 

the experimental data. Returning to Fig. 3 we observe that due to the relatively high 

correlation between analysis and short-range forecast errors (see Fig. 5), perceived 

errors for the model variables are significantly lower than the true errors (Fig. 3). At 6-

hour lead time, for example, the perceived error measurements for U and T provide a 
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2-3-fold underestimate of the true error variance. This will be further discussed in the 

context of the operational forecast system in Section 5.a.2. 

Note that the third variable shown in Fig. 5, GH, is not a directly analyzed variable; 

rather, it is derived from analysis control variables. Simulated ρ values for GH are 

nevertheless consistent with the ground truth, albeit only at and beyond 12 hours lead 

time. The deviation of 6-hour ρ is possibly due to some random noise or bias introduced 

in the calculation of GH (e.g., a particular discretization of the hydrostatic equation; 

Wee et al., 2012) in the OSSE that makes the ρ assumption invalid. 

b. LFD-Related Assumptions 

Recall from Section 2.c that correlation ρ9,10 between lagged true forecast errors x9 

and x10 in cost function (Eq. (14)) is specified by the correlation γ9,10 between lagged 

perceived errors f9 and f10, valid at the same time. Since in an OSSE environment both 

angles are directly measurable, the accuracy of approximating correlation “ρ” with “γ” 

can be tested. Fig. 6 displays ρ and γ as a function of lead time with forecasts lagged 24 

hours apart (since the OSSE forecasts are available only once, instead of four times per 

day) for variables U, T, and GH at 500 hPa height. 

At 36/60 hour lead time, the correlation between lagged true and perceived errors 

differs less than 0.025. This can be explained by the small differences between true and 

perceived error variances at and beyond 36-hour lead time (see Fig. 3), validating 

Assumption 4 (Section 2.c), and thus ρ9,10 ≈ 𝛾9,10. 

The correlation between lagged true errors in Fig. 6 exhibits less than 0.01 

variations beyond 24/48 hours lead time. This indicates that once transient decay 
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390

395

400

405

410

389 subsides, triangles TFi-1Fi are approximately similar. This effectively validates 

Assumption 6 about the close similarity of exponential expansion or growth rates in the 

391 attractor of a model and that of a model trajectory diverged from reality. 

392 5 Assessment of error variance in OSSE and operational 

393 analysis/forecast systems 

394 In this section, the SAFE-II algorithm described in Section 2 will be used to 

estimate GSI - GFS true analysis and forecast error variances. The estimates will be 

396 based on measurements of perceived error and LFD variances, first from an OSSE 

397 environment, then from the operational NCEP system. 

398 a. Error variance in selected variables 

399 1) OSSE Environment 

In Section 4.a, error decomposition Eq. (10) was fitted directly to the time mean of 

401 true error variance measurements from an OSSE experiment. Here we will proceed as 

402 if we did not know reality and use perceived error variance measurements from the 

403 same OSSE analysis/forecast system to estimate the true error variance. In the error 

404 estimation experiments reported here, the truth will be used only in the evaluation of 

the results. 

406 The quality of these practical estimates will be assessed by comparing them with a 

407 characterization of true growing (g0
2 ) and decaying (d0

2 ) error variances and their 

408 amplification and decay rates (α and β). As mentioned in Section 4.a, the fitted 

409 parameter values of SAFE-II in Table 2 are used as reference values for the estimates 

presented here. Along with these reference values, Table 3 shows the SAFE-I and 
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SAFE-II error parameter estimates for 500 hPa analysis variables U and T for the OSSE 

experiments. Estimates of GH are strongly influenced by the deviation of ρ at 6 hours 

(see discussion on Fig. 5(c)) and thus are not shown. SAFE-II estimates of growing 

error variance and growing rate are closer to the reference values than the SAFE-I 

results, except for T where the results are identical since no decaying component is 

identified by SAFE-II. SAFE-II estimates are within 5-10% of the reference values for 

growing error variance and within 2% for their amplification rate. 

Since decaying errors shrink fast and practically disappear within 24 hours (see 

Section 4.a), their estimation is especially challenging: only the first few perceived error 

variance measurement points provide meaningful information about their behavior. 

LFD measurements used in the cost function (see Eq. (14)) are no help with the 

estimation of decaying parameters as they constrain only the estimation of the growing 

parameters. SAFE-II decaying error variance and decay rate estimates for model 

variable U contain relatively large, nearly 25% and 50% deviation from their reference 

values, respectively. The total error variance estimate for U is more accurate wth SAFE-

II than SAFE-I (1% versus 9% error), though both are statistically reliable at the 95% 

confidence level. Their estimates of error correlation are similar. 

2) NCEP operational analysis/forecast system 

The main results of the study are visualized in Fig. 7. 200 hPa (a) U, (b) T, and (c) 

GH variables in the NCEP operational system are chosen for demonstration as decaying 

errors constitute a sizable portion of analysis error at this level (see Section 5.b). Fig. 7 

shows the perceived error variance measurements (black open circles) with a 95% 
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confidence level sampling uncertainty (black vertical bars) as a function of lead time. 

The corresponding simulated perceived error variance (thin black curve), and the 

estimated total (thick black curve), growing (red) and decaying (blue) error variance 

are also shown. 

For all variables and at all lead times, the simulated perceived error variance falls 

within the 95% SEM uncertainty intervals of the perceived error measurements, 

indicating that the SAFE-II error behavior model is consistent with the experimental 

measurement data. The results in Fig. 7 confirm the error behavior indicated by the 

schematic Fig. 1. After a relatively short, 12-18 hour transitional period during which 

the decaying error component vanishes, the total error assumes an exponential growth. 

Fig. 7 confirms a finding from the OSSE experiments (Section 4.a) that the 

conventional measure of forecast performance, perceived error variance, can be a rather 

poor estimate of the true short-range forecast error variance. At 6-hour lead time, for 

example, the perceived error measurements provide a 3-4-fold underestimate of the true 

error variance similarly as in the OSSE environment (see Fig. 3). The discrepancy is 

due to the fact that perceived error measurements do not reflect the presence of error in 

the verifying analysis fields that is relatively highly correlated with the error in the 

forecasts. It is not until 2 days lead time that the deviation of simulated or measured 

perceived error variance from the true error variance drops below 5% of the true error 

variance. The use of perceived error as an estimate of true forecast error thus leads to 

an underestimation of error variance and an overestimation of error growth (PT14). The 

overestimation of error growth when using perceived error variances are used may 
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partially explain the apparent lack of sufficient spread and perceived deficiency in 

perturbation growth in most ensemble systems studied (see, e.g., Buizza et al., 2005), 

as well as the difference between “external” (i.e., verified against analyses of the 

atmosphere) vs. “internal” (verified against another model forecast) predictability and 

error growth noted by Lorenz (1982) and a series of follow-on studies. 

3) Comparison with results from OSSE analysis / forecast system 

Table 4 summarizes the NCEP operational forecast system results for 200 hPa 

height variables displayed in Fig. 7. For an easy comparison with results from the error 

evolution of an OSSE experiment in Section 4.a, results for 500 hPa height variables 

are also shown in Table 4. Comparing SAFE-II estimates from Table 3 with 500 hPa 

estimates from Table 4, we first note that both the total and growing analysis errors 

appear to be severely underestimated by the OSSE system for U and GH. This may be 

the result of tuning OSSE error variances to match operational perceived error variances 

that, as noted above, are significantly lower than true error variances. 

Interestingly, error growth rate estimates for the NCEP operational system verified 

against operational analyses from September - November 2015 (Table 4), and against 

an ECMWF high resolution simulation with July-August lower boundary forcing 

(OSSE nature run, Table 3) display less than 3% difference for the two model variables 

U and T at the 500 hPa height level. This may be an indication that when properly 

assessed, external (model vs. reality) and internal (model vs. model) error growth, after 

all, may be rather similar. These results are also consistent with Assumption 6 in Section 

2.c. 
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Analysis vs forecast error correlations are found slightly (about 0.03) higher in the 

operational system for all variables (cf. ρ1 in Tables 3 and 4). For U, the OSSE analysis 

also contains a larger decaying component. The use of an improved hybrid DA scheme 

and increased model resolution in the operational vs. the OSSE setup, as well as the 

addition of too much noise in the simulation of observational error in the OSSE system 

may both contribute to the correlation and decaying error results above. 

Table 4 also lists error variance and other estimated parameters for GH. While the 

GH analysis vs forecast error correlation in Table 4 appears to be similar to or only 

slightly higher than those for the other variables, both the growth rate and the 

percentage of decaying error is markedly higher for GH than for the other variables. 

The latter result is qualitatively consistent with OSSE results in Table 2. Note that GH 

is not a GFS model or GSI analysis variable but rather is derived from model prognostic 

variables including temperature, surface pressure, and humidity (Houtekamer et al. 

2005) through the hydrostatic equation (Grell et al. 1995). When the hydrostatic 

equation is integrated from the model surface to the top of the model to calculate GH, 

independent random error present in the prognostic variables may lead to a higher level 

of noise (i.e., decaying error) in GH compared with model prognostic variables. As for 

the GH growth rate, it corresponds to an error doubling time of 1.26 days, below 

Simmons et al (1995)’s 1.5 days estimate for 500 hPa height. It is not clear why the GH 

growth rate is significantly higher than that for the model variables. 

b. Vertical profile of analysis error variance 
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In this section, SAFE-II is used to estimate the vertical distribution of error variance 

from 1000 to 100 hPa for the GFS-GSI operational forecast system. SAFE-I estimates 

are also given for a comparison. 

1) Fitting error 

As described in Section 2.a, a critical part of SAFE-II is the evaluation of the fit of 

simulated perceived error curves to the sample-based (time) mean of perceived error 

measurements at all lead times considered. A fitting error say 95% of the time smaller 

than SEM at the 95% significance level indicates that experimental measurement data 

are consistent with the SAFE assumptions and error model. Fig. 8 displays the 

difference between the absolute value of the fitting error of perceived error variance 

and the 1.96SEM confidence interval at the 1.5-day lead time for variables U, T, and 

GH, for both SAFE-I and SAFE-II as follows: 

2|  fi  – f  
i
 2| – 1.96SEMi .          (19)  

The results at other lead times are qualitatively similar. The fitting error is smaller than 

1.96SEM for all vertical levels for both SAFE-I and SAFE-II, which indicates that both 

error models are consistent with the measurements at the 95% confidence level. The 

lower negative values for SAFE-II indicate that the two additional parameters (the 

variance and decay rate of decaying errors) introduced in the present study offer a more 

complete error evolution model, attested by a closer fit to the perceived error 

measurements. 

2) Total error 
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Fig. 9 displays the growing (red circles), decaying (blue circles), and total (black 

circles) analysis error variance for the three variables investigated: U, T, and GH. 

SAFE-I estimates of the total error variance (that is all assumed to be growing) are 

shown as red crosses for a comparison. 6-hour lead time perceived error variance 

measured as the difference between first guess and analysis fields is also provided 

(green plus signs) as a possible indicator of analysis quality. 

Looking first at the total error of the two model variables, U has an absolute 

maximum around the upper-level jet (300 hPa), gradually/quickly dropping to 

lower/much lower values near the bottom/top of the domain. In contrast, T has two 

peaks, one presumably associated with the low-level jet (around 925 hPa), and a second 

one above the jet level (200 hPa). Interestingly, the ratio between the maximum and 

minimum total error variance in the vertical is in the 4-5 range for the two variables U 

and T. The vertical profile of GH is less pronounced, with an absolute and secondary 

maximum at 300 hPa and the surface, respectively. 

As found earlier for selected variables in an OSSE setting (Section 5.a.1), when 

no decaying errors are detected, SAFE-I error estimates (red crosses in Fig. 9) match 

the total error variance estimates of SAFE-II (black open circles). In the presence of 

decaying errors, SAFE-I still provides growing error estimates similar to SAFE-II; 

however, these estimates are lower than the total error since the decaying analysis errors 

are not directly accounted for. 

6-hour perceived error variance directly relates to the quality of background 

forecasts (or first guesses) in DA, and indirectly reflects error variance in the analysis. 
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Profiles of 6-hour perceived error variance for the three variables correlate well (at 0.88 

or higher values) with SAFE-II estimates of total analysis error variance profiles (Fig. 

9). As found in Section 5.a.2 for variables at 200 hPa height, perceived error 

measurements, however, are by a factor of 3-4 lower than estimates of true error through 

the entire profile of all variables. Such an underestimation can have profound impacts 

in the areas of data assimilation (underestimation of first guess error variance), 

ensemble initialization (specification of too low initial ensemble spread), and OSSE 

system calibration (setting simulated analysis error variance at too low levels). 

We mention that the estimated U and T total error variance in Fig. 9 display similar 

vertical profiles to those measured directly by Privé et al. (2013a, see the thick solid 

lines in their Fig. 5a and d) and Privé and Errico (2013b, see the heavy dashed lines in 

their Fig. 1a and d) in their OSSE studies. The actual error variance values from their 

studies, however, differ from the operational forecast system error estimates in Fig. 9, 

just as was the case with the NCEP OSSE results (see related discussion in Section 

5.a.3). Note that error levels may also differ due to distinctly different circulation 

regimes over the evaluation period of the operational vs OSSE DA-forecast system. 

3) Growth rate 

Beyond the variance and correlation of errors, SAFE-I and SAFE-II also provide 

estimates for the time evolution of error variance as a function of lead time. 6-hour 

amplification factors for (a) U, (b) T, and (c) GH are displayed as a function of height 

in Fig. 10. At all levels, GH has consistently faster error growth rate than the other two 

variables. For all variables, error growth peaks near the level of the mid-latitude jet 
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characterized with strong baroclinic instabilities at 300 hPa for U and GH, while around 

450 hPa for T. Variations in growth rate across levels and variables reflect the instability 

properties of different dynamical processes, operating on various spatial scales. The 

slow error growth near the model top for the variables relative to other levels may be 

explained by the strongly diffusive model dynamics (Houtekamer et al. 2005). 

The model variables U and T also have a weaker maximum, near the low-level jet 

and surface, respectively. It is interesting to point out that for the two model variables, 

total analysis error variance has a corresponding maximum (typically 50 hPa for U and 

150 hPa for T) above the double maxima observed in error growth. With vertically 

uniform observational coverage, analysis error maxima are expected to exactly colocate 

that of error growth. Given the density of in situ observations gradually decreases with 

altitude, the upward shift of analysis maxima from growth rate maxima is expected. 

4) Decaying errors 

Just as shown for 200 hPa variables (Fig. 7 and Table 4), the decaying errors are 

most prominent in GH fields throughout the entire atmosphere (Fig. 9). This is even 

more visible in Fig. 11 that depicts the vertical profile of the percentage of the decaying 

component in total analysis error variance (open circles) estimated by SAFE-II. As 

discussed in Section 5.a.3, decaying errors in GH may be accentuated by the formula 

used in their derivation from analyzed model prognostic variables. 

In contrast, variable T is least affected by decaying errors, where they constitute 

less than 15% of the total analysis error, and only in the upper half of the atmosphere 

(see Figs. 9 and 11). U is in between, with two maxima situated around the upper and 
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lower level jets, with a spike near the top of the model. The source of decaying errors 

in the analyzed variables includes representativeness errors (especially near diverse 

topography, Quintana-Seguí et al., 2008; Jiménez and Dudhia, 2012), approximations 

in balance constraints, observational noise, interpolations, localization, and other 

statistical and numerical procedures in DA. Interestingly, no decaying errors are found 

in the non-divergent mid-troposphere where commonly used balance constraints in the 

DA schemes may be most applicable. As noted in Section 5.a.1, due to their nature, 

decaying errors affect only analyses and short-range forecasts, therefore their estimates 

are subject to a higher level of uncertainty. Further studies into the estimation of 

decaying errors are therefore warranted. 

5) The decaying component of analysis increments 

An analysis field (Kalnay, 2003) is the sum of a first guess forecast that as we saw 

itself contains decaying errors, and the analysis increment (AI) which is identical to the 

6-hour percieved forecast error. It is well understood that the introduction of excessive 

noise into the analysis via the AI in a cycled DA system can negatively affect the quality 

of the analysis (Houtekamer and Mitchell, 2001; Dee, 2005). Hence the reduction of 

noise in AI has been a prominent but hard to achieve goal in DA. As the noise introduced 

by the data assimilation step via the AI into the analysis field contributes to the overall 

level of decaying errors in the analysis, the vertical profile of the proportion of decaying 

errors in the analysis is expected to be qualitatively similar to that in the AI. 

Since both measurements and simulated values of 6-hour perceived forecast errors 

are an integral part of SAFE-II, a convenient methodology offers itself for the 
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estimation of noise in the form of decaying errors in AI. The method is based on the 

simulation of the variance in 6-hour LFDs with Eq. (10), and then fitting the simulated 

curves to the sample mean of different lead time LFD variance measurements. A cost 

2function similar to Eq. (17) is used where xi  and ωi 
-1 are replaced by the sample mean 

of 6-hour LFD variance and its SEM-based weight, respectively. 

Fig. 11 shows the proportion of the decaying error component in the variance in AI 

and analysis fields as crosses and open circles, respectively. As expected, the vertical 

profile of the proportion of the decaying component of the analysis error is similar to, 

though 10-30% higher than the decaying error component in AI for all variables 

investigated. Just like in the analysis fields, decaying errors in AI are more pronounced 

in the upper and lower parts of the model domain, roughly as those in analysis errors. 

Note, however, that no decaying analysis errors are diagnosed for low-level temperature, 

despite their presence in AI. 

6. Conclusions 

The evaluation of and improvements to data assimilation, ensemble forecasting, 

and observing system simulation techniques require knowledge of error variance in 

NWP analysis and forecast fields. Since reality is unknown, such error variance (i.e., 

“true” error variance) is directly not measurable. As observations are sporadic, most 

systematic studies resort to estimating error variance by comparing forecast fields with 

verifying analysis fields (i.e., “perceived” error). Such an approach (i) cannot assess 

errors in the analysis, and (ii) ignores the effect of analysis error on forecast error 

estimates. 
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Peña and Toth (2014) proposed an inverse procedure called Statistical Analysis 

and Forecast Error (SAFE-I) algorithm for the bias-free estimation of true analysis and 

forecast error variance. SAFE-I uses perceived error measurements (defined with 

respect to the verifying analysis), and models them with a few parameters describing 

the evolution of the true error in time: the initial error variance (g0
2), the dynamical 

growth rate (α), and the correlation between analysis and background forecast errors 

(ρ1). The unknown parameters are estimated by minimizing the difference between the 

measured and modeled (via the unknown parameters) perceived error at various lead 

times. SAFE-I is independent of assumptions and methods used in observing, DA, or 

prediction systems. 

An important assumption in SAFE-I is that at short lead times the true forecast 

error variance (variances between forecasts and reality at the same time) grows 

exponentially. This assumption, however, neglects any noise that observations or the 

analysis procedure may inject into the analysis. Such errors typically project onto the 

stable manifold of the system and thus rapidly decay, manifesting as a transitional 

behavior in the evolution of the total error variance. In this paper, we relax the error 

evolution assumption in SAFE-I by the introduction of decaying, in addition to the 

growing analysis errors. Specifically, the modified SAFE method (SAFE-II) models 

true forecast error variance as the sum of an exponentially growing, and an orthogonal 

decaying component, the latter of which described by its variance (d0
2) and decay rate 

(β). The estimation of the expanded set of parameters in SAFE-II is facilitated by the 
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inclusion of additional measurements in the form of variances between lagged forecasts 

2valid at the same time, linked with parameters g0 and α. 

When decaying errors are present, the true forecast error variance may display an 

initial transitional behavior, during which total error may decay or exhibit slower than 

exponential growth while decaying errors diminish. Only after most decaying errors 

vanish, does the total error assume an exponential pattern of growth. 

The performance of SAFE-II was evaluated using the NCEP GFS/GSI system. 

First, the assumptions behind SAFE-II were validated in an OSSE environment where 

reality is exactly known. Area mean (Northern Hemisphere extratropics) true analysis 

and forecast error variance was simulated by the error growth equation used in SAFE-

II, and fitted to sample-based measurements of these quantities from an OSSE system. 

Error variance simulated by SAFE-II was found to be within sampling uncertainty of 

the sample-based measurements. This, along with other related results indicate that the 

assumptions behind SAFE-II are consistent with the experimental data. 

Next, in the same OSSE environment, we pretended that truth is unknown and 

used only perceived error measurements and SAFE-I or SAFE-II to produce and 

validate against truth true error variance estimates. In the presence of decaying errors 

(variable U), all SAFE-II error parameter estimates were found to be more accurate than 

those with SAFE-I. For the two model variables tested (500 hPa U and T), SAFE-II 

estimates of total analysis error variance were within 1% of the actual measured values, 

while growth rate and error correlation values were within 2% of their reference values. 

Growing analysis error variance estimates deviated less than 5% from their reference 
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values. Decaying errors were found to diminish rapidly. Hence perceived error 

measurements are affected only at a few early lead times, leading to larger (up to 50%) 

uncertainty in decaying error variance and decay rate estimates. 

In Section 5, SAFE-II was used to estimate the error variance in operational NCEP 

analyses and forecasts. U, T, and GH perceived error variances simulated by SAFE-II 

were found to be within the sampling uncertainty of their measurement-based 

counterparts, indicating that the assumptions behind SAFE-II are consistent with the 

NCEP operational data. The key findings of this part of the study are as follows: 

 The growth rate for the model variables U and T peaks around the upper-level jet 

in the areas of strongest baroclinic instabilities, with an error variance doubling time of 

around 23 hours. A weaker maximum appears around the lower level jet. Error variance 

doubling time near the surface is around 32 hours. Forecasts for GH exhibit error 

growth faster than those for U and T at all levels. 

 The maximum of total analysis error variance for U and GH are near the upper-

level jet (250-300 hPa), consistent with the level of their fastest error growth rate. The 

maximum of total analysis error variance for T is near the low-level jet (~ 925 hPa). 

Interestingly, the total analysis error for the model variables U and T peaks just above 

the maxima in growth rate. This may be explained by a general decrease in the density 

of in situ observations with increasing altitude. 

 Decaying errors constitute up to 40% and 15% of the total analysis error variance 

for wind and temperature variables in the upper (and for U, also in the lower) 

atmosphere, respectively. Decaying errors originate from observational noise, and 
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approximations in DA procedures (e.g., improper balance constraints caused by model 

related errors near the model top, and lack of proper specification of representativeness 

error in areas of complex topography). No decaying errors are observed in the non-

divergent mid-tropospheric region. This may be related to the quasi-nondivergent 

nature of dynamics at these layers where balancing the analysis variables is simpler and 

more straightforward. 

 GH has a higher (50-60%) proportion of decaying errors than the model variables. 

This may be due to the accumulation of independent noise from the model variables as 

GH is derived from them. 

7. Discussion 

Due to the limited number of short lead time perceived error measurements 

influenced by decaying errors, the uncertainty in decaying parameter estimates are 

much higher than that in the estimates of the other parameters. Efficient approaches to 

constrain the estimates of decaying parameters and assess the uncertainty in such 

estimates need to be pursued further. The power law relationship of the error 

decorrelation (i.e. Assumption 3) may also need to be refined as decaying errors may 

not exhibit the same exponential-like decorrelation behavior as the growing errors. 

Possible future applications of SAFE-II may also include gridpoint-wise 

estimation of analysis error variance. Geographical localization of excessive noise in 

analysis fields (e.g., due to a lack of physical or dynamical balance) may aid in the 

diagnosis and correction of weaknesses in DA techniques. Solid estimates of analysis 

uncertainty may also benefit ensemble initialization techniques. 
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A recurring observation in this study is that the commonly used perceived error 

variance gives a rather poor estimate of the true error variance (e.g., 3-4 fold 

underestimation at 6 hours lead time) and a related overestimation of the error growth 

rate within the first two days due to the neglect of (i) analysis errors and (ii) the 

correlation between error fields in the analyses and forecasts. The use of perceived error 

as an estimator of true error can have significant consequences in a number of areas: 

Data Assimilation. In DA, background error variances will be underestimated. As 

DA performance depends only on the ratio (but not the absolute value) of errors in the 

background field vs. the observations, the tuning of DA schemes may lead to an 

underestimation of observational (including representativeness) errors as well. 

Observing System Simulation Experiments. If true error variance is assumed to be 

as low as perceived error variance measured in operational forecast systems, OSSE 

systems may be tuned to exhibit too low true error variance. This problem may be 

evidenced in NOAA’s OSSE system (cf. column 7 in Tables 2 and 4). 

Predictability. When the growth of perturbations such as lagged forecast 

differences (LFD) is compared with the growth of perceived error, the latter, since at 

short lead times perceived errors have unrealistically low values, appears to be 

significantly faster than the former. This situation has been widely interpreted in the 

literature as a sign that external predictability is shorter than internal predictability (i.e., 

the divergence of trajectories in nature is faster than in its numerical models, e.g. 

Simmons et al., 1995). True error, however, amplifies much slower than perceived error 

(see, e.g., Figs. 3 and 7), possibly eliminating the need for such hypothetical 
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explanations. Implications may include a longer than currently thought limit on 

predictability. 

Ensemble Forecasting. If the size of initial perturbations is set so that 6-hour 

ensemble variance matches 6-hour perceived error variance, the ensemble, though it 

may appear reasonable when its spread is checked against perceived error, actually will 

start out underdispersive. Irrespective of initial perturbation generation methods, the 

underdispersiveness readily manifests itself at later lead times (e.g., Buizza et al. 2005), 

however, when analysis error variance becomes negligible compared to forecast error 

variance. Conventionally, the situation is explained as insufficient perturbation growth 

due to model imperfectness presumedly related to the numerical models being more 

predictable than the atmosphere (i.e., too high internal predictability). The notion and 

an array of stochastic model perturbation methods (Buizza et al., 1999; Shutts, 2005) 

have been proposed to hasten perturbation growth with the aim of remedying a problem 

that may not exist. Future studies can further explore the validity of the Statistical 

Analysis and Forecast Error (SAFE) estimation based interpretations advanced above. 
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Appendix A 

761 Sampling Uncertainty 

762 Just as SAFE-I (Peña and Toth 2014), SAFE-II estimates the unknown parameters 

763 of true analysis and forecast error variance by fitting perceived error variance modeled 

764 with the unknown parameters to sample-based measurements of perceived error 

variance. The expected error in finite sample-based estimates of the expected value of 

766 normally distributed variables is given by the Standard Error of the Mean (or 

767 Measurement, SEM): 

768 SEMi = sdi · f / √N,  (A1)  

769 where sdi represents the sample standard deviation in the sample at lead time i, N is the 

sample size, and f = (1+r1)(1-r1)-1 is an adjustment coefficient accounting for serial 

771 correlation (r1) in the sample. 

772 As the standard deviation of finite sample-based mean tend to grow with lead time, 

773 observed quantities at longer time ranges will need to be given smaller weight in the 

774 minimization procedure. The standardized weights wi in Eq. 8 are defined as: 

wi = SEMi / ∑ SEMi.     (A2)  i 

776 Note that the definition of SEMi and wi can be generalized to other finite sample-based 

777 estimates of expected value, like the lagged forecast difference and true forecast error 

778 variance et al. used in this study. 

779 Since SEM values quantify the uncertainty in sample mean values, they can also 

be considered as confidence intervals when SAFE estimates are compared with the 

781 mean of measurements. Assuming that the finite-sample mean of perceived error 

782 variance follows a Gaussian distribution, the 95% confidence interval can be defined 
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by adding and subtracting 1.96 times the SEMi value to/from the perceived error 

variance measurements. 

Appendix B 

OSSE Setup 

In OSSEs, analyses and forecasts are generated the same way as in an operational 

NWP system, except the role of real observations are taken by simulated observations. 

A long integration with a fine resolution model other than that used in the NWP DA-

forecast system is usually considered as truth (or nature), from which simulated 

observations are generated with the addition of noise meant to represent different 

sources of observational and representativeness errors (e.g., Atlas, 1997). Since truth is 

exactly known, when carefully designed, OSSEs offer a unique and fully controlled 

environment in which to evaluate the quality of NWP techniques. 

Nature used in this OSSE system was created by the European Center for Medium-

Range Weather Forecasts (ECMWF) operational model version c31r1 at T511 (about 

40 km) horizontal and 91-level vertical resolution, with boundary forcing data from 1 

May 2005 to 31 May 2006 (Masutani et al., 2006; Andersson and Matsuani, 2010). The 

NWP modeling (GFS) and DA system (Gridpoint Statistical Interpolation analysis - 

GSI) are based on an earlier and reduced resolution (T382, about 52 km, and 64-level) 

version of NCEP’s operational suite with a non-hybrid DA scheme. The observations 

assimilated include conventional, satellite, and COSMIC-2 (“Constellation for 

Observing System for Meteorology, Ionosphere, and Climate”) data generated from the 

nature run. Representativeness errors are inherent in the simulated observations due to 

a difference in resolution between the nature run and the NWP system. No systematic 
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or random errors were otherwise added to nature for the simulated observations, except 

for satellite radiances. All observations are assimilated using a ±1 hour window 

centered at nominal analysis times. 
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Figure Captions 

TABLE 1. Summary of Assumptions 1-6 behind the SAFE-II method related to the 

use of perceived error variance (PEV) and variance of lagged forecast difference 

(VLFD) measurements. 

TABLE 2. Comparison between fitted (Fit) and reference (Ref) values of error 

parameters for zonal wind (U), temperature (T), and geopotential height (GH) at 

500 hPa in the Observing System Simulation Experiments (OSSE) using SAFE-I 

and SAFE-II, respectively. g0
2 and d0

2 denote the growing and decaying 

components, with ∆t=6 hours growth and decay rates of e∆t·α and e∆t·β. The values 

in brackets indicate the percentage of estimation error compared to ground truth 

(reference). Entries with – indicates where parameter values are not available. The 

rightmost column lists the growth rate of lagged forecast difference (LFD) 

variance per 6 hours. 

TABLE 3. SAFE-I and SAFE-II estimates of error evolution parameters for 500 hPa U 

and T in the OSSE experiments. Reference values (Ref) are the SAFE-II fitted 

parameter values from Table 2. The values in brackets indicate the 95% sampling 

uncertainty confidence intervals of Ref. 

TABLE 4. Estimated error parameters for U, T, and GH at 200 and 500 hPa in GFS 

operational forecasts using SAFE-II. 

FIG 1. Schematic of the evolution of the true forecast error variance (solid) and its 

growing (dashed) and decaying (dotted) components. 

FIG 2. 3D schematic of the relationship between the correlations of true (TFi-1 and TFi, 

ρi-1,i) and perceived errors (AFi-1 and AFi, γi-1,i), all valid at the same time. F, A, 

and T represent forecast, analyzed, and true states, respectively. 

FIG 3. Sample-mean based estimates of ground truth for true forecast error variance 

(open circles with 95% vertical confidence intervals as vertical bars) along with 

the corresponding fitted values (solid line) for variables (a) U, (b) T, and (c) GH 

at 500 hPa in the OSSE environment. For comparison, perceived error variance 

measurements are also shown as dashed lines. 
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FIG 4. Estimates of growing (dashed line), decaying (dotted line) and total (solid 

line) error variance along with the corresponding fitted values (hollow circles 

with 95% confidence intervals as vertical bars) for GH at 500 hPa in the 

OSSE environment. 

FIG 5. Sample-mean fitted (solid line) and measured (circle) ρi for variables (a) U, (b) 

T and (c) GH at 500 hPa in the OSSE. Vertical bars represent 95% confidence 

intervals. 

FIG 6. Comparison between the correlations of lagged perceived (circle) and true 

forecast errors (cross) with a lag of 24 hours as a function of lead time for variables 

(a) U, (b) T, and (c) GH at 500 hPa in the OSSE. 

FIG 7. Temporal variation of sample-mean actual (circle) and simulated (black thin line) 

perceived error variances and estimated total (black thick line), growing (red) and 

decaying (blue) true forecast error variances over Northern Hemisphere for 

variables (a) U, (b) T, and (c) GH at 200 hPa for GFS-GSI operational forecast 

system. 

FIG 8. Profile of the differences between the absolute fitting errors and the 95% 

confidence interval of perceived error variances at 1.5 days by SAFE-II (circle) 

and SAFE-I (cross) for variables (a) U, (b) T and (c) GH for GFS-GSI operational 

forecast system. 

FIG 9. Same as Figure 8, but for estimated total (black circle), growing (red circle) and 

decaying (blue circle) analysis error variance by SAFE-II. Green and Red crosses 

represent the 6-hour perceived error variance and the estimated analysis error 

variance by SAFE-I, respectively. 

FIG 10. Same as Figure 8 but for the estimated growth rate of error variance per 6 hours. 

FIG 11. Same as Figure 8 but for estimated percentage of decaying components in total 

analysis error variance by SAFE-II (circle) and variance of analysis increment 

(cross).  
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1008 TABLE 1. Summary of Assumptions 1-6 behind the SAFE-II method related to the 

1009 use of perceived error variance (PEV) and variance of lagged forecast difference 

1010 (VLFD) measurements. 

Subject Estimation area Assumption 

Section 

introduced / 

validated 

1. Model error PEV Negligible for studied variables 2.a / 4.a 

2.Error evolution PEV 
Exponential growth / decay of initial 

error variance 
2.a, b / 4.a 

3.Data impact on 

analysis 
PEV 

Power law decorrelation of analysis error 

from increasing lead time foecast error 
2.a / 4.a 

4.Relationship between 

true and perceived error 

variance 

VLFD 
True and perceived error variances 

become similar with longer lead times 
2.c / 4.b 

5.Transient period VLFD 
Decaying errors diminish in first 24 

hours of integration 
2.c / 4.a 

6.Divergence rate of 

model trajectories 
VLFD 

Divergence rate is similar between 

lagged forecasts vs. forecast and truth 
2.c / 4.a, b 

1011 
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1012 TABLE 2. Comparison between fitted (Fit) and reference (Ref) values of error 

1013 parameters for zonal wind (U), temperature (T), and geopotential height (GH) at 500 

1014 hPa in the Observing System Simulation Experiments (OSSE) using SAFE-I and 

1015 SAFE-II, respectively. g0
2 and d0

2 denote the growing and decaying components, with 

1016 ∆t=6 hours growth and decay rates of e∆t·α and e∆t·β. The values in brackets indicate the 

1017 percentage of estimation error compared to ground truth (reference). Entries with – 

1018 indicates where parameter values are not available. The rightmost column lists the 

1019 growth rate of lagged forecast difference (LFD) variance per 6 hours. The units of the 

1020 error variances (g0
2 and d0

2) for U, T, and GH are (m s-1)2, K2, and m2, respectively. 

2g0 e∆t·α 2d0 e∆t·β 2g0 
2+d0 

2d0 
2g0 

2+d0 

LFD var 

growth 

Fit : SAFE-I 2.09 1.157 0.0 - 2.09 (8.0%) 0.0 

U : Fit : SAFE-II 1.96 1.168 0.248 0.221 2.21 (2.6%) 11.2% 1.146 

Ref / 1.96SEM - - - - 2.27 / 0.265 -

Fit : SAFE-I 0.229 1.174 0.0 - 0.229 (9.0%) 0.0 

T : Fit : SAFE-II 0.229 1.174 0.0 - 0.229 (9.0%) 0.0 1.169 

Ref / 1.96SEM - - - - 0.210 / 0.024 -

Fit :SAFE-I 14.9 1.288 0.0 - 14.9 (12.9%) 0.0 

GH : Fit : SAFE-II 13.1 1.318 4.34 0.368 17.5 (2.2%) 24.8% 1.278 

Ref / 1.96SEM - - - - 17.1 / 2.10 -

1021 

1022 

1023 

1024 
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1025 TABLE 3. SAFE-I and SAFE-II estimates of error evolution parameters for 500 hPa U 

1026 and T in the OSSE experiments. Reference values (Ref) are the SAFE-II fitted 

1027 parameter values from Table 2. The values in brackets indicate the 95% sampling 

1028 uncertainty confidence intervals of Ref. 

2g0 e∆t·α 2d0 e∆t·β 2x0 
2)d0 

2 / (g0 
2+d0 ρ1 

U : 

SAFE-I 2.07 1.149 0.0 - 2.07 0.0 0.792 

SAFE-II 2.06 1.153 0.19 0.34 2.25 8.4% 0.804 

Ref 1.96 1.168 0.25 0.22 
2.27 

(0.27) 
11.2% 

0.796 

(0.023) 

SAFE-I 0.21 1.165 0.0 - 0.21 0.0 0.810 

T : 
SAFE-II 0.21 1.165 0.0 - 0.21 0.0 0.810 

Ref 0.23 1.174 0.0 -
0.21 

(0.024) 
0.0 

0.824 

(0.031) 

1029 
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1030 TABLE 4. Estimated error parameters for U, T, and GH at 200 and 500 hPa in GFS 

1031 operational forecasts using SAFE-II. 

2g0 e∆t·α 2d0 e∆t·β 22+d0g0 
2)d0 

2 / (g0 
2+d0 ρ1 

U : 200 hPa 3.74 1.17 1.93 0.37 5.67 34.0% 0.87 

500 hPa 3.67 1.16 0.0 - 3.67 0.0 0.83 

T : 
200 hPa 0.39 1.19 0.049 0.35 0.439 11.2% 0.86 

500 hPa 0.25 1.21 0.0 - 0.25 0.0 0.84 

GH : 
200 hPa 34.60 1.32 39.47 0.14 74.07 53.3% 0.87 

500 hPa 24.72 1.32 34.88 0.14 59.60 58.5% 0.87 

1032 

1033 
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1034 

1035 Figure 1. Schematic of the evolution of the true forecast error variance (solid) and its 

1036 growing (dashed) and decaying (dotted) components. 
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1039 Figure 2. 3D schematic of the relationship between the correlations of true (TFi-1 and 

1040 TFi, ρi-1,i) and perceived errors (AFi-1 and AFi, γi-1,i), all valid at the same time. F, A, 

1041 and T represent forecast, analyzed, and true states, respectively. 
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1043

1044

1045

1046

1047

1048

1049

Figure 3. Sample-mean based estimates of ground truth for true forecast error variance 

(open circles with 95% vertical confidence intervals as vertical bars) along with the 

corresponding fitted values (solid line) for variables (a) U, (b) T, and (c) GH at 500 hPa 

in the OSSE environment. For comparison, perceived error variance measurements are 

also shown as dashed lines. 
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1050

1051

1052

1053

1054

1055

1056

Figure 4. Estimates of growing (dashed line), decaying (dotted line) and total 

(solid line) error variance along with the corresponding fitted values (hollow 

circles with 95% confidence intervals as vertical bars) for GH at 500 hPa in the 

OSSE environment. 
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1057 

1058 Figure 5. Sample-mean fitted (solid line) and measured (circle) ρi for variables (a) U, 

1059 (b) T, and (c) GH at 500 hPa in the OSSE. Vertical bars represent 95% confidence 

1060 intervals. 
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1063 

1064 Figure 6. Comparison between the correlations of lagged perceived (circle) and 

1065 true forecast errors (cross) with a lag of 24 hours as a function of lead time for 

1066 variables (a) U, (b) T, and (c) GH at 500 hPa in the OSSE. 
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1067 

1068 Figure 7. Temporal variation of sample-mean actual (circle) and simulated (black thin 

1069 line) perceived error variances and estimated total (black thick line), growing (red) and 

1070 decaying (blue) true forecast error variances over Northern Hemisphere for variables 

1071 (a) U, (b) T, and (c) GH at 200 hPa for GFS-GSI operational forecast system. 
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1073

1074

1075

1076

1077

1078

Figure 8. Profile of the differences between the absolute fitting errors and the 95% 

confidence interval of perceived error variances at 1.5 days by SAFE-II (circle) and 

SAFE-I (cross) for variables (a) U, (b) T, and (c) GH for GFS-GSI operational forecast 

system.  
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1079 

1080 Figure 9. Same as Figure 8, but for estimated total (black circle), growing (red circle) 

1081 and decaying (blue circle) analysis error variance by SAFE-II. Green and Red crosses 

1082 represent the 6-hour perceived error variance and the estimated analysis error variance 

1083 by SAFE-I, respectively. 
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1084 

1085 Figure 10. Same as Figure 8 but for the estimated growth rate of error variance per 6 

1086 hours. 
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1088 

1089 Figure 11. Same as Figure 8 but for the estimated percentage of decaying components 

1090 in total analysis error variance by SAFE-II (circle) and variance of analysis increment 

1091 (cross). 
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